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Tissue engineering is a relatively new but rapidly developing field in the medical sciences. Noncoding 
RNAs (ncRNAs) are functional RNA molecules without a protein-coding function; they can regulate 
cellular behavior and change the biological milieu of the tissue. The application of ncRNAs in tissue 
engineering is starting to attract increasing attention as a means of resolving a large number of unmet 
healthcare needs, although ncRNA-based approaches have not yet entered clinical practice. In-depth 
research on the regulation and delivery of ncRNAs may improve their application in tissue engineering. 
The aim of this review is: to outline essential ncRNAs that are related to tissue engineering for the repair 
and regeneration of nerve, skin, liver, vascular system, and muscle tissue; to discuss their regulation and 
delivery; and to anticipate their potential therapeutic applications. 

© 2017 THE AUTHORS. Published by Elsevier LTD on behalf of the Chinese Academy of Engineering and  
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1. Introduction

Tissue engineering is a growing area in biomedical research 
that holds great promise for a range of potential applications in 
regenerative medicine. It applies the principles of engineering 
and life sciences in order to develop biological substitutes to 
repair diseased and injured tissues and organs and restore their 
functions. The essential characteristic of tissue engineering is the 
use—whether alone or combined—of living cells, biocompatible 
materials, biochemical factors (e.g., growth factors, GFs), and 
physical factors (e.g., cyclic mechanical loading) to create a bio-
mimetic tissue-like structure [1]. The living cells can be derived 
from donor tissue, albeit with a limited supply; stem or progen-
itor cells can be used as an alternative cell source [1]. For tissue 
engineering applications, the cellular microenvironment must al-
low seed cells to enact their roles, as they do in native tissue, thus 
ensuring the effective regulation of cell behavior.

Noncoding RNAs (ncRNAs) are a large cluster of RNAs that have 

multiple functions in diverse cellular processes, although they 
do not encode proteins. According to their biological functions, 
ncRNAs can be divided into infrastructural and regulatory types. 
Infrastructural RNAs include ribosomal RNAs (rRNAs), transfer 
RNAs (tRNAs), small nucleolar RNAs (snoRNAs), small nuclear 
RNAs (snRNAs), guide RNAs (gRNAs), and telomerase RNAs. Reg-
ulatory ncRNAs can be classified into microRNAs (miRNAs), small 
interfering RNAs (siRNAs), long noncoding RNAs (lncRNAs), Piwi- 
interacting RNAs (piRNAs), promoter-associated RNAs (PARs), and 
enhancer RNAs (eRNAs) [2–4].

ncRNAs are considered to be a class of molecular targets that 
may play an important role in tissue engineering. Approaches for 
ncRNA-based tissue regeneration therapy include altering endog-
enous cellular activity using ncRNAs, influencing the behavior of 
resident stem/progenitor cells or cells incorporated into tissue 
engineered constructs, or modulating the fate of both implanted 
and endogenous cells with selected ncRNAs. miRNAs, siRNAs, 
and lncRNAs are the main regulatory ncRNAs that have current  

   * Corresponding author. 
      E-mail address: nervegu@ntu.edu.cn 
 
http://dx.doi.org/10.1016/J.ENG.2017.01.005 
2095-8099/© 2017 THE AUTHORS. Published by Elsevier LTD on behalf of the Chinese Academy of Engineering and Higher Education Press Limited Company. 
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Contents lists available at ScienceDirect

journal  homepage:  www.elsevier.com/ locate /eng

Engineering



www.manaraa.com

4 S. Li et al. / Engineering 3 (2017) 3–15

potential applications. miRNAs are a class of small ncRNAs that 
have attracted considerable interest; they can influence a wide 
range of cell functions, including the control of proliferation, 
migration, differentiation, apoptosis, and other processes, by 
down-regulating or up-regulating the expression of their target 
genes [5–7]. lncRNAs are a major class of eukaryotic transcripts 
that regulate gene expression, possibly by chromatin remodeling, 
alternative splicing modulation, interacting with proteins to affect 
protein activity and localization, or serving as a structural compo-
nent [8,9]. Moreover, lncRNAs may compete for miRNA binding, 
thus affecting the regulation and function of miRNA target genes. 
lncRNAs influence almost every step in the life cycle of genes; 
their best-studied function occurs in the epigenetic regulation of 
allelic expression [10,11].

2. The applications of ncRNAs in tissue engineering

The applications of ncRNAs in tissue engineering have received 
considerable attention. In the following discussion, we outline 
a variety of ncRNAs that have been used for neural tissue engi-
neering, liver tissue engineering, skin tissue engineering, muscle 
tissue engineering, and vascular tissue engineering.

2.1. Neural tissue engineering

The nervous system comprises two major components: the 
central nervous system (CNS) and the peripheral nervous sys-
tem (PNS). In clinical practice, injuries to the nervous system are 
commonly encountered. Neural tissue engineering holds great 
promise for the treatment of diseased or injured nerves, which 
have a limited capacity to spontaneously regenerate. The poor 
regenerative capacity of nerve tissues results from the existence 
of a hostile microenvironment formed by a complex series of 
events after nerve diseases or injuries. Therefore, an important 
issue in neural tissue engineering is to manipulate and neutralize 
the local microenvironment, thus making it more permissive for 
regeneration.

In neural tissue engineering, the supporting cells that are im-
planted into the injured nerve may produce GFs or extracellular 
matrix (ECM) molecules to facilitate nerve regeneration. Neuronal 
cells and neuroglial cells are the main cell types for neural tissue 
engineering. Neural stem cells have also been widely used in neu-
ral tissue engineering due to their capacity to self-renew and ter-
minally differentiate into mature neural cell types. Therefore, the 
regulation and potential application of ncRNAs for neural tissue 
engineering mainly involves neural stem cells, neuronal cells, and 
neuroglial cells (Table 1) [12–200].

2.1.1. Neural stem cells
Neural stem/progenitor cells (NSPCs): The ability to control 

the self-renewal and differentiation of transplanted NSPCs is crit-
ical for the successful application of neural tissue engineering. 
miR-25, miR-124/124a, miR-200, and miR-106b-25 clusters can 
promote the neuronal differentiation of NSPCs, and miR-9 and 
let-7d can promote the neuronal and astrocytic differentiation of 
neural stem cells (NSCs) [16,17]. miR-34a can obviously increase 
the numbers of NeuN+ cells, and can enhance neuronal matu-
ration and the neurite elongation of NSPC-derived neurons. In 
addition, it is necessary to ensure the subsequent maturation of 
differentiated cells for proliferation and functionalities. miR-25, 
miR-137, miR-184, and miR-195 can enhance NSPC proliferation 
[12–15], which helps provide sufficient cells to restore tissue 
structure and functionality. miR-137, miR-184, and miR-195 also 
increase the number of neurons and astrocytes from NSPC differ-
entiation [13–15].

Mesenchymal stem cells (MSCs): MSCs, also called bone-mar-
row stromal cells, are pluripotent stem cells that come from the 
stromal compartment of the bone marrow. MSCs are increasingly 
applied in cell-based therapies for various diseases because they 
are easily obtained from the bone marrow and can be expanded 
on a large scale by in vitro culture. miR-9 and miR-124 can pro-
mote neuronal differentiation of MSCs toward mature functional 
neurons, while miR-128 negatively regulates the differentiation 
of MSCs into neuron-like cells [16,21,22].

Table 1 
ncRNAs with potential applications for tissue engineering.

Cell type and function ncRNAs 

Nerve
Neural stem/progenitor cells
Promote proliferation miR-25 [12]; miR-137 [13]; miR-184 [14]; miR-195 [15]
Induce differentiation miR-9, siRNA-TLX [16]; let-7d [17]; miR-137 [13]; miR-184 [14]; miR-195 [15]; miR-34a [18]; lncRNA-BDNF-AS, 

siRNA-BDNF-AS [19]
Mesenchymal stem cells
Induce differentiation miR-9 [20]; miR-124 [21]
Reduce differentiation miR-128 [22]

Neuronal cells
Inhibit cell death miR-223 [23]; miR-181c [24]; miR-592 [25]; miR-424 [26]; miR-23a-3p [27]; miR-23a/b, miR-27a/b, siRNA-Apaf-1 [28]
Promote cell death miR-134 [29]; miR-200c [30]; miR-30a/b [31–33]; miR-124 [34]; miR-711 [35]

Regulate degeneration and apoptosis miR-20a [36]; miR-29b [37]; miR-146a, siRNA-miR146a [38]

Promote neurite outgrowth miR-7 [39]; miR-21 [40]; miR-222, siRNA-PTEN [41]; miR-8 [42]; miR-431 [43]; miR-145 [44]; lncRNA-uc.217 [45]; 
miR-138, siRNA-SIRT1 [46]

Microglial cells
Inhibit inflammation let-7c [47]; miR-124, siRNA-C/EBP-α [48]
Promote pro-inflammation miR-155 [49]

Inhibit activation let-7c-5p [50]

Astrocytes
Promote proliferation miR-17-5p [51]
Inhibit inflammation miR-146a [52]

Promote activation and differentiation miR-181 [24]

Inhibit proliferation and migration lncRNA-SCIR1 [53]

Schwann cells

Inhibit proliferation and migration miR-182 [54]; let-7 [55]; miR-1 [56]

Promote proliferation and migration miR-221, miR-222 [57]



www.manaraa.com

5S. Li et al. / Engineering 3 (2017) 3–15

Cell type and function ncRNAs 

Inhibit migration miR-9 [58]

Promote migration miR-132 [59]

Regulate dedifferentiation and proliferation miR-34a [60]

Regulate myelination miR-140 [60]; miR-29a [61]

Regulate fibrinolysis miR-340 [62]

Liver
Stem/progenitor cells
Reduce differentiation
Induce differentiation
Induce/reduce differentiation
Reduce differentiation and engraftment

let-7b [63]; let-7f [64]
miR-1246, miR-1290, miR-148a, miR-30a, miR-30a, miR-424 [65]
miR-122, siRNA-FoxA1 [66–68]
miR-199a-5p, siRNA-SMARCA4, siRNA-MST1 [69]

Hepatocytes
Promote proliferation miR-21 [70–72]; miR-211 [73]; lncRNA-URHC [74]
Inhibit proliferation miR-26a [75]; miR-33 [76]; miR-127, siRNA-Bcl6 [77]; miR-378 [70]; lncRNA-H19 [78]

Regulate cholesterol metabolism lncRNA-HC [79]

Promote migration lncRNA-HOTAIR [80]

Inhibit apoptosis and inflammation lncRNA-TUG1 [81]

Cholangiocytes
Inhibit cell function miR-506 [82]
Skin
Epithelial stem cells
Inhibit proliferation, induce differentiation
Induce differentiation

miR-203 [83–86]
miR-27b, miR-224 [87]; miR-574-3p, miR-31 [88]

Inhibit proliferation miR-34, siRNA-P63 [89]; miR-720 [90]; miR-210, siRNA-E2F3 [91]

Improve proliferation, reduce differentiation miR-125b, siRNA-FGFR2 [92,93]

Inhibit proliferation, induce differentiation miR-24, siRNA-PAK4 [94]

Keratinocytes

Improve migration miR-205 [95–97]

Inhibit migration, improve proliferation miR-483-3p [98]

Inhibit migration miR-198 [99]

Improve migration, inhibit migration miR-21 [100,101]

Improve migration and proliferation miR-31, siRNA-EMP-1, siRNA-TGF-β [102]

Regulate apoptosis lncRNA-p21 [103]

Fibroblasts
Inhibit proliferation let-7, miR-125 [104]
Improve proliferation miR-29 [104]; miR-21 [105]; miR-22 [106]; lncRNA-H19 [107]

Induce senescence miR-152, miR-181a [108]; miR-141 [109]; miR-143 [110]; miR-519a [111]

Improve migration miR-21 [112]

Induce epithelial–mesenchymal transition miR-34 [113]; let-7 [114]

Reduce epithelial–mesenchymal transition miR-200 [113]

Reduce transdifferentiation miR-146a [115,116]; miR-7 [117]

Decrease extracellular matrix deposition miR-29 [118,119]; miR-150 [120]; miR-19a [121]

Increase extracellular matrix deposition miR-92a [122]

Increase mechano-transduction miR-21 [123–125]

Control collagen stabilization lncRNA-TSIX, siRNA-TSIX [126]

Melanocytes
Inhibit apoptosis miR-17 [127,128]
Muscle
Myoblasts
Induce differentiation

Promote proliferation
Promote proliferation and reduce differentiation
Reduce differentiation
Promote proliferation and migration

lncRNA-MD1 [129]; miR-1 [130]; lncRNA-MyoD [131]; lncRNA-Dum [132]; lncRNA-MUNC [133]; lncRNA-YY1 [134]; 
miR-29 [135]; miR-181 [136]; lncRNA-H19 [137]; miR-322, miR-503 [138]
miR-133 [130]
lncRNA-sirt1 AS [139]; lncRNA-Malat1 [31,140]; lncRNA-31 [141]
miR-23a, siRNA-Myh [77]
miR-486 [142]

Skeletal muscle satellite cells
Induce differentiation
Inhibit proliferation and induce differentiation

miR-206 [143]; miR-214, siRNA-Ezh2 [144]; miR-27b [145]
miR-1, miR-206 [146]

Skeletal muscle stem cells
Inhibit differentiation
Induce cell-cycle arrest

miR-669a/q [147]
miR-195, miR-497 [148]

Cardiac progenitor cells
Control the balance between differentiation and 
proliferation
Inhibit proliferation and induce differentiation
Enhance cardiac remodeling and reduce survival
Inhibit apoptosis

miR-1 [149]

miR-133a [150]; miR-1, miR-499 [151]
miR-208a [152,153]; miR-28b [154]
miR-138 [155]

Table 1  (continued)
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Cell type and function ncRNAs 

Cardiomyocytes
Inhibit apoptosis
Regulate differentiation and remodeling
Promote hypertrophy
Promote muscle growth
Induce proliferation
Inhibit hypertrophy
Promote apoptosis

miR-21 [156]; miR-214 [157]; miR-24 [52]; lncRNA-MHRT [158]
miR-21, miR-129, miR-212 [159]
miR-22 [160]
miR-486 [142]
miR-199a, miR-590 [161]; miR-17-92 [162]
lncRNA-H19 [163]
lncRNA-NRF [164]

Cardiac fibroblasts
Inhibit proliferation
Promote proliferation
Induce reprogramming to cardiomyocytes

miR-101 [165]
lncRNA-H19 [166]
miR-1, miR-133, miR-208, miR-499 [167]

Vascular
Endothelial cells
Inhibit proliferation
Promote proliferation and/or migration
Induce senescence and reduce angiogenesis
Inhibit migration and angiogenesis
Promote angiogenesis
Promote apoptosis and senescence
Inhibit proliferation, migration, and apoptosis
Regulate inflammation

miR-34a [168]; miR-19a [169]; miR-200c, siRNA-ZEB1 [170]
miR-126-5p [171]; miR-210 [172]; miR-424 [173]; lncRNA-H19 [81]
miR-34a [168]; miR-217 [174]; miR-17-92 [175]; miR-503 [176]; siRNA-ROBO4 [177]
miR-101, siRNA-EZH2 [178]
miR-17-5p, miR-18a, miR-31, miR-155 [179]; miR-210 [172]; miR-424 [173]; lncRNA-H19 [81]; miR-126 [180]
miR-200c, siRNA-ZEB1 [170]; PINC [181]
miR-503 [176]; miR-155, siRNA-RhoA, siRNA-MYLK [182]
miR-92a, siRNA-KLF4 [183]; miR-663 [184]; miR-10a [185]; miR-712, miR-502, siRNA-TIMP3, siRNA-RECK [186]

Smooth muscle cells
Induce differentiation and inhibit proliferation
Inhibit proliferation, migration, and apoptosis
Promote migration
Promote proliferation
Promote proliferation and inhibit apoptosis
Inhibit proliferation and promote apoptosis
Reduce elastin levels
Regulate phenotype

miR-143, miR-145 [187]; lncRNA-MYOSLID [166]
miR-503 [176]
miR-712, miR-502, siRNA-TIMP3, siRNA-RECK [186]; miR-24, siRNA-Trb3 [188]
miR-24, siRNA-Trb3 [188]; miR-221, miR-222, siRNA-Kip1, siRNA-Kip2 [189]; miR-34a [190]
miR-21 [191]
lncRNA-HIF1A-AS1 [33]; lncRNA-p21 [192]
miR-29a [193]
siRNA-Jagged1 [194]

Fibroblasts
Reduce elastin levels miR-29a [193]
Stem cells
Induce differentiation
Reduce differentiation

miR-145 [195]; miR-200c, miR-150, siRNA-ZEB1 [196]; miR-1 [197]; miR-10a [198]
siRNA-NOX4, siRNA-TGF-β [199]

Endothelial progenitor cells
Inhibit survival and migration miR-15a, miR-16 [200]

Table 1  (continued)

2.1.2. Neuronal cells
After nerve injury, neuronal death is one of the events that 

influences recovery; therefore, protecting neurons from cell 
death is important. miR-223, miR-181c, miR-592, miR-424, miR-
23a-3p, miR-23a/b, and miR-27a/b can protect neurons from cell 
death after ischemic brain injury [23–28], while miR-134, miR-
200c, miR-30a/b, miR-124, and miR-711 promote neuronal cell 
death [29–32,34,35,201]. In spinal cord injury, miR-20a causes 
motor neuron degeneration by targeting Ngn1 [36], and miR-29b 
regulates neuronal apoptosis by reducing the expression of Bad, 
Bim, Puma, and Noxa [37]. Following peripheral nerve injury, 
overexpression of miR-21 and miR-222 reduces apoptosis and 
enhances the viability of cultured dorsal root ganglion (DRG) neu-
rons [40,41]. miR-146a mediates apoptosis in DRG neurons under 
hyperglycemic conditions [38].

The outgrowth of neurites/axons from lesioned neurons is 
the essence of peripheral nerve regeneration. miR-21 and miR-
222 promote neurite outgrowth by targeting Sprouty2 and PTEN, 
respectively [40,41]. miR-8, miR-431, miR-145, and miR-138 have 
been shown to play regulatory roles in neurite outgrowth [42–
44,46]. In addition, lncRNA-uc.217 regulates neurite outgrowth in 
DRG neurons following peripheral nerve injury [45].

2.1.3. Neuroglial cells
Microglial cells: Microglial cells are important cell types in the 

CNS. let-7c suppresses the activation of microglial cells against is-
chemic damage [47]. miR-124 can decrease the inflammatory re-
sponse toward nerve injury in order to prevent secondary injury 
in microglial cells [48]. miR-155 regulates the M1/M2 phenotype 

ratio, and further regulates the microglia-mediated neurotoxic 
response and enhanced axonal regeneration [49].

Astrocytes: Astrocytes, which are specialized glial cells, carry 
out supportive, metabolic, and homeostatic functions in the CNS. 
The injury of myelinated axons results in axonal degeneration 
and the accumulation of myelin debris, which contains a variety 
of axonal growth inhibitors. Removal of these inhibitors via mi-
croglia and astrocytes can facilitate axon regeneration. Astrocytes 
also affect the immune response by mediating different signaling 
pathways. miR-17-5p promotes the proliferation of astrocytes 
by targeting the cell-cycle inhibitors p21 and RB1 [51]. miR-181 
affects inflammatory cytokine secretion of astrocytes, and mod-
ulates astrocyte activation and differentiation [24]. miR-146a 
carries out an anti-inflammatory role by regulating the release of 
cytokines from astrocytes, suggesting that miR-146a treatment 
has the potential to prevent secondary injures and promote tissue 
repair [52].

Schwann cells (SCs): SCs are the main glial cells in the PNS 
and play an essential role in peripheral nerve regeneration. 
SCs can also produce a high level of different GFs such as nerve 
growth factor (NGF), brain-derived neurotrophic factor (BDNF), 
and so forth [202]. In addition, SCs possess the capacity of phago-
cytosis to clear away myelin debris. These characteristics make 
SCs the most widely used support cells in neural tissue engineer-
ing for peripheral nerve regeneration. SCs are able to dedifferenti-
ate back to an immature-like state following axonal damage. After 
dedifferentiation, SCs increase their cell number by proliferation 
in order for the repair process to begin. The migration of SCs to 
injured sites is also necessary in order for them to carry out their 
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functions. Therefore, enhancing the efficiency of SC proliferation 
and migration during this preparation phase may promote nerve 
regeneration. miR-182 inhibits the proliferation and migration 
of SCs by targeting FGF9 and NTM, respectively, at an early stage 
following sciatic nerve injury [54], while miR-221 and miR-222 
promote the proliferation and migration of SCs by targeting LASS2 
[57]. miR-9 is an important functional regulator of SC migration 
by targeting CTHRC1, which in turn regulates Rac1 GTPase [58]. 
Overexpression of miR-132 facilitates SC migration in order to 
regulate peripheral nerve regeneration [59]. miR-34a can regulate 
SC dedifferentiation and proliferation following peripheral nerve 
injury by targeting Notch1 and cyclin D1 [60].

NGF, the first-discovered member of the neurotrophin family, 
contributes to neuronal survival and axon growth of the PNS, and 
ensures the functional integrity of neurons in the CNS. Many ex-
perimental studies have determined the beneficial effects of NGF 
on nerve regeneration. However, clinical applications of NGF are 
still limited by several constraints, including its deleterious side 
effects and the complexity of its delivery. let-7 miRNAs have been 
found to significantly regulate cell proliferation and migration of 
primary SCs by targeting NGF and suppressing its protein trans-
lation. Inhibition of let-7 miRNAs increases NGF secretion from 
primary cultured SCs, and enhances axonal outgrowth from a 
co-culture of primary SCs and DRG neurons. The inhibitory effect 
of let-7 miRNAs on SC apoptosis may also serve as an early stress 
response to nerve injury [55]. In addition, NGF expression that is 
inhibited by let-7 miRNA can regulate miR-221/222 expression in 
order to affect the SC phenotype, suggesting that a cascade of let-7  
miRNA, through NGF, to miR-221/222 may represent a bypass for 
the let-7 regulation of SC phenotype modulation. Another neu-
rotrophin, BDNF, is regulated by miR-1, and miR-1 regulates the 
proliferation and migration of SCs [56].

SCs are responsible for synthesizing myelin sheath in the PNS. 
miR-140 can modulate axonal myelination in co-cultures of DRG 
neurons and SCs by targeting the transcription factor Egr2, a 
master regulator of myelination [60]. miR-29a may regulate the 
myelination of SCs by targeting PMP22, a dose-sensitive, disease- 
associated protein primarily expressed in myelinating SCs [61].

After peripheral nerve injury, the degenerative debris and in-
flammatory alterations at the injury site may block the elongation 
of regenerating axons from reaching target organs. miR-340 reg-
ulates fibrinolysis, and also influences debris removal and axonal 
regrowth during sciatic nerve regeneration by targeting tPA, a 
serine protease with the capability of degrading matrix molecules 
and cell adhesions [62].

2.2. Liver tissue engineering

The liver is one of the largest organs in the human body. Acute 
or acute-on-chronic failure of the liver results in a life-threatening  
situation. Survival rates have improved substantially in recent 
years through advances in critical-care management and the 
use of liver transplantation. Unfortunately, the number of avail-
able liver grafts does not meet the continuously growing need 
[203,204]. The use of bioengineered livers, instead of procuring 
organs from brain-dead donors or removing parts of the liver 
from living donors, is the most promising approach for liver sup-
port [205].

Tissue-engineered solutions are under development to tem-
porarily or definitively support or replace a diseased liver. Studies 
have shown that differentially expressed ncRNAs in the liver are 
associated with several physiological and pathological processes 
[206–210]. Some reports have suggested that ncRNAs could im-
prove hepatocyte proliferation or induce the differentiation of 
stem cells into hepatocyte-like cells (Table 1). miR-21 and miR-

378 promote DNA synthesis in hepatocytes after a partial (2/3) 
hepatectomy by inhibiting Btg2 and ornithine decarboxylase, 
respectively [70]. miR-21 can regulate liver regeneration by in-
fluencing the progression through G1 and into the S phase of the 
cell cycle, by targeting cyclin D1 [71]. The inhibition of miR-33 
can obviously increase liver regeneration [76]. miR-26a and miR-
127 also regulate hepatocyte proliferation [75,77,211].

The differentiation of stem cells or other types of progenitor 
cells to hepatocyte-like cells is the second major field in which 
ncRNAs are already in use, with potential applications for liver 
tissue engineering. The overexpression of miR-122 can improve 
hepatic differentiation [66,212], and miR-122 expression gradu-
ally increased during the maturation of mouse embryonic stem 
cells toward hepatocytes [68]. let-7 can regulate the secretion of 
hepatic-specific factors in human adipose-tissue-derived MSCs 
[63]. Using a set of miRNAs instead of a single miRNA is another 
approach to optimize hepatic differentiation. Overexpression of 
seven miRNAs (miR-1246, miR-1290, miR-148a, miR-30a, miR-
424, miR-542-5p, and miR-122) induced human MSC (hMSC) 
conversion into functionally mature hepatocytes, while a single 
miRNA could not initiate hepatic differentiation [65].

Compared with the hepatocyte system, less-extensive attention 
has been paid to the biliary tree. Tissue engineering approaches 
mimicking biliary function would require a more complex microar-
chitecture of scaffolds that enable cell-cell interactions, allowing 
for biliary metabolism and transport [213,214]. Although little is 
known about the role of miRNAs in regulating cholangiocyte pro-
liferation and function [215], several studies implicated specific 
miRNAs in the pathogenesis of cholangiocarcinoma. For example, 
the overexpression of miR-31 in cholangiocarcinoma cells altered 
RAS/MAPK signaling [216], and miR-138 can regulate cholangio-
carcinoma proliferation, cell-cycle control, and migration, possibly 
by directly targeting RhoC [217]. miR-506 regulates the expres-
sion of anion exchanger 2 (AE2), and the suppression of miR-506 
leads to improved AE2 function in primary biliary cirrhosis chol-
angiocytes [82]. In addition, the regulation of miR-125b/let-7a  
expression in cholangiocytes could be a therapeutic approach for 
biliary diseases [218].

2.3. Skin tissue engineering

The demand for clinical intervention for skin loss has in-
creased in recent years. Tissue engineering represents a feasible 
approach to obtain replacement skin. A key point in the develop-
ment of engineered skin is controlling cellular behavior. As a new 
and exciting field of RNA interference, ncRNAs have emerged to 
overcome the barriers of engineered skin design. The regulation 
of cell behavior by ncRNA modulation provides a realistic and 
precise method of affecting cell behavior in bioengineered skin 
equivalents. Generally speaking, miRNAs may be modulated by 
overexpression or silencing in skin tissue engineering [219]. The 
marriage of ncRNA with skin tissue engineering offers the prom-
ise of creating safer, more effective skin tissue engineering for 
critically important clinical conditions [220].

Epithelial stem cells are skin-specific, making them the ideal 
choice for skin tissue engineering. miRNA can govern the transi-
tion of epithelial stem cells from proliferative pools to differen-
tiated keratinocytes [221]. miR-203 plays an important role in 
maintaining “stemness” in the skin and in other stratified epithe-
lial tissues [222–224]. In addition, miR-203, miR-720, and miR-
574-3p can regulate the initiation of epithelial stratification and 
the maintenance of basal keratinocyte proliferation by directly 
targeting p63 [89,90].

Keratinocytes, which differentiate from epithelial stem cells, 
are the key cells that provide a barrier function to the skin. miR-
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205 can regulate the migration of keratinocytes [95,96], and miR-
198 and miR-21 were found to be associated with chronic wound 
healing by regulating the migration of keratinocytes [99]. miR-31 
promoted the migration and proliferation of keratinocytes [102], 
and miR-483-3p can affect the growth arrest of keratinocytes 
during the final steps of re-epithelialization [225].

Fibroblasts are the primary cells of the dermis. let-7 plays an 
important function in dermal fibroblast proliferation in serum- 
starved quiescent fibroblasts [104]. miR-22 promotes the pro-
liferation of fibroblasts by regulating several cell-cycle genes 
[106]. Faraonio et al. [226] described how 24 miRNAs influence 
senescence-dependent changes in human diploid fibroblasts. Of 
these, miR-210, miR-376a, miR-486-5p, miR-494, and miR-542-
5p can enhance DNA damage and promote senescence. miR-21 
was found to regulate fibroblast migration, which is critical to the 
success of skin tissue engineering [100,101].

It has also been reported that melanocytes can be incorporated 
into epidermal and dermoepidermal bioengineered skin equiva-
lents [227]. Several studies have shown that some miRNAs could 
affect the development and progression of melanoma [228–230]. 
miR-17 has the ability to partially rescue the apoptosis of mel-
anocytes after Dicer ablation by targeting Bim [127]. miR-137, 
miR-182, and miR-340 can regulate microphthalmia-associated 
transcription factor in melanoma cells [231–233].

2.4. Muscle tissue engineering

In the human body, muscles develop strength and body work, 
and are responsible for constant blood pumping (i.e., the cardiac 
muscle) and posture and movements (i.e., the skeletal muscles). 
Muscle injury and degeneration account for significant fractions 
of the global adult mortality and disease burden [234].

Regenerative treatments are not always available for the clinical 
care of striated muscle disorders; therefore, muscle tissue engi-
neering and stem-cell-based treatments are being promisingly 
explored. The aim of tissue engineering is the functional recovery 
of damaged striated muscles by combining biocompatible scaffolds 
with bioactive molecules and/or cells [235,236]. ncRNAs are emerg-
ing as key players in regulating the phenotype of seed cells and the 
adaptability of both exogenous and resident stem cells [129]. Thus, 
the roles of ncRNAs (mainly miRNAs) are widely reported in the 
development of skeletal and cardiac muscle, and in regulating the 
regenerative potential of muscle progenitors (Table 1).

Studies have shown that muscle-related miRNAs, such as miR-1,  
miR-133, and miR-206, play a critical role in modulating muscle 
formation and regeneration [237]. miR-1 promotes differentiation 
of cultured myoblasts by targeting HDAC4, while miR-133 stimu-
lates myoblast proliferation, mostly through the repression of Srf 
expression [130]. miR-206 improves skeletal muscle regeneration 
in Duchenne muscular dystrophy [143] and slows the progression 
of amyotrophic lateral sclerosis [238]. In addition, lncRNA-MD1 
serves as a competing inhibitor to titrate miR-133 and miR-135 
away from their targets, MAML1 and MEF2C, further influencing 
myoblast differentiation [129].

At present, the seed cells of tissue engineering for muscle 
repair are often stem cells; these provide the degenerating mus-
cle tissue with progenitors to reconstitute genetically suitable 
myocytes and restore functionality. Sato et al. [148] showed that 
the transplantation of skeletal muscle stem cells (MuSCs), which 
were treated with miR-195 and miR-497, improved the efficien-
cy of muscle regeneration through target genes involved in the 
cell-cycle progression in dystrophin-deficient mice.

miRNAs are found to play an important role in cardiac tissue, 
where they stimulate cardiomyocyte proliferation in neonatal 

mice, rat hearts, and adult mice following myocardial infarction 
[161]. miRNAs can carry out entwined spatiotemporal roles in 
the expansion and terminal differentiation of cardiac progenitor 
cells (CPCs). For example, miR-1 inhibits the expansion of cardi-
ac progenitors by targeting Hand2, while miR-1-lacking murine 
embryos die at embryonic day (E) 10.5 because of severe cardiac 
malformations [149]. The regulatory role of miRNAs has also been 
reported in the aberrant switch of fetal programs in response to 
cardiac stress; miR-21, miR-129, and miR-212 led to hypertrophy 
and reactivation of a fetal cardiac gene program in rat neonatal 
cardiomyocytes [159]. As in skeletal myogenesis, miR-22 and 
miR-133a can affect hypertrophic remodeling by regulating key 
epigenetic regulators in cardiomyocytes [239].

Overall, as a tissue engineering strategy, the combination of 
MuSCs, postnatal cardiomyocytes or cardiac stem cells treated 
with selected ncRNAs, and biomimetic scaffolds should be able 
to improve their respective engraftment in the damaged tissue, 
which may make it possible to increase tissue regeneration ability 
in skeletal muscle disorders and heart diseases, respectively [240].

2.5. Vascular tissue engineering

The vascular system forms an extensive network throughout the 
body, mediating gas exchange, nutrient transport, and waste re-
moval, as well as delivering cells and mediators in the immune re-
sponse [241,242]. Vascular tissue engineering is based on the use of 
scaffolds that can be combined with seed cells such as stem cells, 
along with other cellular and molecular products, to build vascular 
conduits, which can be used to restore, maintain, or improve vas-
cular tissue function [241]. In vascular tissue engineering, ncRNAs 
can enhance the quantity or quality of cells available for cell-based 
therapeutic angiogenesis, promote stem cell differentiation to vas-
cular cells to be seeded in the scaffolds, improve the function of 
cells acting at different levels in the vascular scaffold, and correct 
antiangiogenic molecular defects [243,244].

Endothelial cells (ECs) and smooth muscle cells (SMCs) are 
essential components of blood vessels; thus, ECs and SMCs are 
regarded as the main supporting cells in vascular tissue engineer-
ing. For this reason, ncRNA application in vascular tissue engi-
neering mainly focuses on the regulatory roles of ncRNAs toward 
these two cells. ECs line the inner layer of the entire vascular sys-
tem and ensure vascular homeostasis. They have an essential role 
during developmental and post-natal angiogenesis [241]. miR-
34a and miR-217 promote endothelial senescence, and their in-
hibitor reduces senescence and increases angiogenesis [168,174]. 
miR-424, miR-17-5p, miR-18a, miR-31, and miR-155 promote vas-
cular integrity and angiogenesis [173,179]. miR-210 and miR-126-
5p promote the proliferation of ECs [171,172]. In addition, ncRNAs 
can be applied alone or in combination with GFs in order to im-
prove endothelial coverage and endothelial function in vascular 
tissue engineering.

SMCs make up the middle layer of the vascular wall, and 
perform the physiological functions of contracting and relaxing 
vessels and regulating blood pressure and blood flow distribu-
tion. They also play important roles in the vascular remodeling 
processes that follow injury [245–247]. Following vascular inju-
ry, SMCs dedifferentiate to promote vessel repair. Healthy SMCs 
should return to their contractile phenotype once the injury is re-
solved [246]. While miR-221, miR-222, and miR-24 promote SMC 
proliferation, miR-143 and miR-145 stimulate differentiation.

miRNAs also regulate the process of stem cell differentiation to 
vascular cell, and the functional capacities of vascular progenitor 
cells. Some studies focused on techniques to promote vascular dif-
ferentiation from stem cells; for example, miR-1, miR-10, and miR-
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145 can regulate stem cell differentiation to vascular lineages [195].
To sum up, ncRNAs carry out important roles in the cells asso-

ciated with tissue engineering; therefore, they may have potential 
therapeutic applications in tissue engineering as regulators of the 
function and phenotype of some seed cells. Table 1 provides more 
information about regulation relationships.

3. Application methods

It is now widely recognized that an effective and safe delivery 
system is key to ncRNA application in tissue engineering. In brief, 
an ncRNA delivery system should ensure low cytotoxicity and 
high transfection efficiency, and should also allow controlled re-
lease of ncRNAs during the lengthy process of tissue regeneration 
[248]. Here, we focus on some delivery methods of ncRNAs that 
have proven useful for tissue engineering applications, according 
to available works in the literature (Fig. 1).

3.1. Viral transduction

Due to the high transfection efficiency, viral transduction is a 
good choice for delivering ncRNAs. Several viruses such as retro-
viruses, lentiviruses, adenoviruses, and adeno-associated viruses 
(AAVs) can be used in tissue engineering; retroviruses and lenti-
viruses are widely used.

Retroviruses can be used effectively in various types of dividing  
cells, including NSPCs. However, the drawback of retroviruses is 
their inability to infect quiescent cells [249]. In contrast, lentivi-
ruses can transduce non-dividing cells [250–253], which makes 
these viruses popular for use in the transfection of cells for tissue 
engineering. The drawbacks of using retroviruses and lentiviruses 
are that these viruses are unstable when kept in storage and are 
unable to achieve high viral titers. Adenoviruses can efficiently 
achieve high viral titers in dividing and non-dividing cells; how-
ever, they have significant immunogenicity and toxicity [254,255]. 

AAVs are a safe and efficient method for the delivery of ncRNAs 
because of their small size. AAVs are stable in the nucleus, and 
can maintain high levels of gene expression for months or years 
[254].

Of these methods, viral transduction provides high transfec-
tion efficiency and sustained expression of ncRNAs in transfected 
cells due to the integration of the viral genome into the host ge-
nome. However, genomic integration can lead to uncontrolled in-
sertional mutagenesis, so the use of viral-mediated ncRNA deliv-
ery in translational therapeutic applications is limited [256–258].

3.2. Non-viral transduction

In comparison with viral transduction, non-viral delivery 
methods have unique advantages, including low immunogenicity 
and mutagenesis, and the capacity of delivering a large quanti-
ty of therapeutic agents [256]. Hence, researchers often prefer 
non-viral approaches to viral transduction.

The liposome is widely used in methods of ncRNA delivery. 
Its advantages are its biocompatibility, reproducibility, and ease 
of large-scale production [259]. A number of conventional rea-
gents are currently available, including Lipofectamine®, siPORT™,  
HiPerFect, Oligofectamine™, MaxSuppressor™, DharmaFECT®,  
SilentFect™, and NeuroPorter™. Despite their variation in struc-
ture, these reagents share some common features [256]. In par-
ticular, they contain positively charged groups, which interact 
with the negatively charged sugar-phosphate backbone of RNA 
molecules. This interaction helps the contact between the RNA/
reagent complex and the cell membrane, thereby promoting 
subsequent cellular uptake [260]. However, lipid-based delivery 
systems cause toxicity and nonspecific uptake in vivo. Moreover, 
this toxicity, which is accompanied by gene changes, could in turn 
hinder the desired outcome of the application [261].

Numerous polymers such as poly(lactide-co-glycolide) (PLGA) 
and polyethylenimine (PEI) are also commonly used as ncRNA 

Fig. 1. Schematic illustration of ncRNA delivery. (a) Viral transduction of ncRNAs into cells through virus infection using different viral vectors; (b) non-viral transduction 
through: liposomes; polymers including polyethylene glycol (PEG), poly(lactide-co-glycolide) (PLGA), and polyethylenimine (PEI); chemical modification; or nanoparticles; 
by which ncRNAs are taken into cells, mainly by cell endocytosis with the help of the above carriers; (c) scaffold-mediated delivery, in which ncRNAs are released into cells 
from a scaffold loaded with non-viral ncRNA vectors, followed by matrix degradation to enable cell ingrowth.
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carriers for gene therapy [262]. PLGA has been widely used for 
drug delivery because it is safe, biocompatible, and biodegrad-
able. In addition, it can be further optimized to control pharma-
codynamics via the surface modification of PLGA nanoparticles 
[248]. PLGA-based nanoparticles are a potential approach for 
efficient ncRNA delivery. PEI, another widely used material for 
ncRNA delivery, is water-soluble and positively charged. The pos-
itively charged PEI can encapsulate negatively charged ncRNAs by 
electrostatic interaction. After endocytosis of these nanocomplex-
es, the strong buffer effect of the complex results in endosome 
swelling, and subsequently causes endosome destabilization and 
the release of ncRNA-encapsulated nanoparticles into the cytosol 
[262–265].

Several chemical modifications can enhance the stability and 
affinity of ncRNAs, and thus improve systemic delivery efficacy 
by increasing the degradation resistance of nucleases in cells 
and tissues. For example, the 2′-O-methyl, 2′-O-methoxyethyl, or 
2′-O-fluorol ncRNAs produced by 2′-OH group modification have 
enhanced stability and higher binding affinity [266]. Cholesterol 
was also conjugated into these chemical modifications in order 
to improve the cellular uptake of ncRNAs; many papers reported 
that cholesterol-conjugated ncRNAs can enter cells directly via 
intravenous injection or tissue injection.

3.3. Scaffold-mediated delivery

Scaffold-mediated delivery is another common delivery method 
in tissue engineering and regenerative medicine. For cell engraft-
ment, proliferation, differentiation, and migration at the injured 
site, biomimetic scaffolds provide a proper microenvironment for 
tissue repair and regeneration [240]. In addition, topographical 
features of scaffolds can ensure the sustained delivery of genes and 
perform additional physical signals to regulate cellular behavior 
and gene-uptake efficiencies [256]. Moreover, scaffold-mediated 
delivery can improve local therapy, thus directly enhancing the 
dose in the target tissue relative to an off-target site. Scaffold archi-
tecture also affects cell phenotype. For example, fiber scaffolds—
particularly those with aligned fibers—can regulate the matura-
tion of SCs [256,267]. A number of studies have demonstrated the 
delivery of ncRNAs from tissue engineering scaffolds, thus intro-
ducing a novel method for the regulation of gene expression from 
the delivery platform [220].

4. Concluding remarks and future perspectives

4.1. Potential risks of ncRNA-based therapy

ncRNA therapeutics, a new concept that differs from conven-
tional chemical drug design, has emerged in recent years in treat-
ment involving tissue engineering and regenerative medicine. 
However, numerous challenges exist for the therapeutic applica-
tion of ncRNAs in tissue engineering and regenerative medicine. 
For example, although the fact that miRNAs target multiple target 
genes can be an advantage, it also causes ambiguity regarding the 
scope of the exact genes that are regulated by miRNAs. For clinical 
evaluation, the functional phenotype and regulatory mechanisms 
of an miRNA need to be well elucidated and validated. Because 
of their regulation of a wide variety of cellular events for tissue 
regeneration, the diversified effects of miRNAs need to be careful-
ly controlled [268]. For example, miR-221 and miR-222 not only 
affect the proliferation and migration of SCs by regulating LASS2, 
but also regulate the aggressive growth of human glioblastomas 
by targeting p27Kip1 [57,269].

For the application of lncRNAs, the challenges are even great-
er. lncRNAs can regulate a series of cellular processes including 

proliferation, differentiation, migration, survival, and apoptosis 
through diverse mechanisms; however, identification of the func-
tioning mechanisms is limited [270]. In addition, lncRNAs are 
tissue-specific protein-coding genes, resulting in additional chal-
lenges when targeting ncRNAs to a specific tissue or to subcellu-
lar compartments.

For ncRNAs with well-defined molecular regulation mecha-
nisms, the delivery system is the greatest challenge. The path-
ways underlying the delivery process are not well elucidated; 
therefore, the established guidelines may not always lead to the 
expected biological phenomenon—a problem that needs to be 
solved.

4.2. Future perspectives

Tissue engineering generates biological substitutes to replace 
compromised tissues or organs mainly by means of scaffold-based 
implants, through which seed cells are often introduced. The con-
comitant introduction of ncRNAs for phenotype modulation of 
the seed cells is also suggested. To date, siRNAs have been used in 
diverse scaffold-based tissue engineering strategies; however, the 
application of other ncRNAs, especially miRNAs, is just beginning.

Although some interesting studies have illustrated the appli-
cation of ncRNAs in tissue engineering, a better comprehension 
of the effects and specific targets of ncRNAs in different types of 
tissues remains to be achieved in view of ncRNA-based therapeu-
tics. In addition, the development of a delivery system to protect 
ncRNAs against degradation, and to enable them to reach the target 
tissue/organ, is a major hurdle to overcome. To fulfill these goals, a 
close collaboration among specialists from different research areas, 
including medical science, biology, and engineering, is required.

In conclusion, research on ncRNA applications in tissue engi-
neering is still in its infancy. However, ncRNA-based therapy is 
developing rapidly and has provided a new horizon for tissue en-
gineering strategies in transporting ncRNA safely into seed cells. 
Given an improved understanding of ncRNA biology and ncRNA 
delivery, we believe that the utility of ncRNAs in tissue engineer-
ing and regenerative medicine will be dramatically improved in 
the near future.
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